Torsion classes generated by silting modules

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate Co-t-structures, Two-term Silting Objects, Τ-tilting Modules, and Torsion Classes

If (A,B) and (A′,B′) are co-t-structures of a triangulated category, then (A′,B′) is called intermediate if A ⊆ A′ ⊆ ΣA. Our main results show that intermediate co-t-structures are in bijection with two-term silting subcategories, and also with support τ -tilting subcategories under some assumptions. We also show that support τ -tilting subcategories are in bijection with certain finitely gener...

متن کامل

Torsion-free Endotrivial Modules

Let G be a finite group and let T (G) be the abelian group of equivalence classes of endotrivial kG-modules, where k is an algebraically closed field of characteristic p. We investigate the torsion-free part TF (G) of the group T (G) and look for generators of TF (G). We describe three methods for obtaining generators. Each of them only gives partial answers to the question but we obtain more p...

متن کامل

Free modules, finitely-generated modules

The following definition is an example of defining things by mapping properties, that is, by the way the object relates to other objects, rather than by internal structure. The first proposition, which says that there is at most one such thing, is typical, as is its proof. Let R be a commutative ring with 1. Let S be a set. A free R-moduleM on generators S is an R-module M and a set map i : S →...

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2018

ISSN: 0004-2080,1871-2487

DOI: 10.4310/arkiv.2018.v56.n1.a2